探索|葛均波团队:心脏瓣膜全介入时代一定会到来(上篇)

作者:陈莎莎  潘文志  周达新  葛均波

单位:复旦大学附属中山医院心内科  中国医学科学院心血管技术与器械创新单元  国家放射与治疗临床医学研究中心

图片
来源:中华心血管病杂志(网络版)2022年第5卷


2002年,Cribier 等[1实施了世界第一例经导管主动脉瓣置换术(transcatheter aortic valve replacement,TAVR),由此,心脏瓣膜病经导管介入治疗突破瓶颈,正式拉开了心脏瓣膜介入时代的序幕。

实际上,在 TAVR 之前,经导管肺动脉瓣置换术(transcatheter pulmonary valve replacement, TPVR)于2000年由Philipp Bonhoeffer教授首次报道[2,但由于患者多为法洛四联症术后患者,发病率不高,未得到广泛关注。
继主动脉瓣之后,经导管二尖瓣、三尖瓣介入治疗也迅猛发展,国内外创新器械研发呈井喷之势,让创伤大、高风险的传统外科手术逐渐向微创、低风险的经导管介入手术转化。

近20年的发展可谓日新月异,掀起了继冠状动脉介入治疗后心脏介入领域的又一次革命。我们对心脏瓣膜疾病经导管介入治疗的发展现状进行阐述,并预测心脏瓣膜全介入时代一定会到来。



本文分为上下两篇,敬请关注:

上篇-经导管主动脉瓣置换介入治疗

下篇-经导管二尖瓣介入治疗、经导管三尖瓣介入治疗、经导管肺动脉瓣置换术

上篇

● 经导管主动脉瓣置换介入治疗的发展现状及探索方向

TAVR发展迅速,对于重度主动脉瓣狭窄(aorticstenosis,AS)的患者,其临床适应证已拓展至外科手术高、中、低危的患[3-6]。在2020年美国心脏协会/美国心脏病学会(American Heart Association/American College of Cardiology,AHA/ACC)瓣膜病管理指南[7-8和2021年欧洲心脏病学会/欧洲心胸外科学会(European Society of Cardiology/European Association for Cardio Thoracic Surgery,ESC/EACTS)瓣膜病管理指南[9中,TAVR在不同危险分层患者中获得替代外科主动脉瓣置换术(surgicalaorticvalvereplacement,SAVR)的Ⅰ类推荐。在欧美发达国家,TAVR的年手术量已经超过SAVR。

国内复旦大学附属中山医院心内科葛均波院士团队在2018年首次提出“全患群(allcomer)TAVR”的概念,预测此为TAVR发展的终极目标[10

随着TAVR患者危险分层的淡化,我们开始更多地关注患者的年龄、TAVR解剖适应程度和技术成熟度。其中,瓣膜耐久性、重度钙化的二叶式主动脉瓣、升主动脉扩张、冠状动脉阻塞风险及单纯主动脉瓣反流(aortic regurgitation,AR)成为挑战,也是“全患群TAVR”道路上我们需要进一步探索的方向。

一、年龄与瓣膜耐久性

鉴于TAVR生物瓣膜具有有限的使用寿命,因此必须考虑患者年龄。

指南推荐的年龄已逐渐降低,目前最低推荐年龄为65岁[7,9。同时,TAVR瓣中瓣技术在手术风险增加的生物瓣衰败患者中应用,相较于二次SAVR显著降低了30d全因死亡率和大出血发生率,并且具有较高的5年生存率[11-14,一定程度上减轻了我们对年轻患者实施TAVR后面临瓣膜衰败的顾虑。并且,首次手术选择TAVR的患者较SAVR可以获得更大的有效瓣口面积[15,TAVR瓣中瓣置入时发生人工瓣膜‑患者不匹配(prosthesis‑patient mismatch,PPM)的风险更小。

基于50岁以上外科生物瓣膜置换术后需要再次手术的患者数量小于5%的研究结果,指南将生物瓣膜选择年龄标准从之前60岁降到50岁。临床上,重度瓣膜结构损害、瓣膜相关性死亡或再次手术干预合称瓣膜衰败,TAVR瓣膜中期(5~8年)严重瓣膜结构损害的发生率为1.3%,瓣膜衰败的发生率为4.6%,而SAVR10年生物瓣膜衰败率为5.6%[16

5年随访结果显示,无论在高危患者群[17还是低危患者群[18,TAVR瓣膜耐久性都不劣于SAVR瓣膜。但是,TAVR瓣膜仍缺乏超过10年的长期随访结果,期待更远期的临床证据来进一步降低TAVR适应患者的年龄,让更多的年轻患者获益。

此外,需要注意的是,目前大多数耐久性研究的TAVR瓣膜是第一代瓣膜,未经抗钙化处理,而新一代TAVR瓣膜针对不同瓣叶材料(牛心包或猪心包)通过不同的脱细胞处理方式,来达到延缓钙化、增加耐久性的目的。还有纯聚合物材料心脏瓣膜也取得进展,其中具有代表性的生物聚合物材料是LifePlolymer,较生物瓣膜更耐用,并具有更好的抗血栓性能。

二、二叶式主动脉瓣和升主动脉扩张

目前国内外报道的研究结果,TAVR治疗二叶式主动脉瓣(bicuspid aorticvalve,BAV)狭窄,总体上与三叶瓣有着相似的手术成功率,以及30d和1~2年的短、中期临床结局[19-24

中国术者在TAVR治疗BAV病变方面的经验是世界领先的,我们创新的小球囊扩张策略[25和系列球囊扩张方案[26]等技术保证了手术成功率,并进一步减少术后永久起搏器置入率。因此,由笔者团队起草,中国医师协会心血管内科医师分会结构性心脏病专业委员会领衔共同编写的《经导管主动脉瓣置换术中国专家共识》已将BAV‑AS列为适应证(极高危者无年龄要求,其他患者≥70岁,由有经验中心或团队完成)[27]。但是,具有重度瓣叶钙化和钙化性融合嵴的BAV患者,TAVR术中主动脉根部损伤和术后中至重度瓣周漏发生率,以及30d、2年死亡率均显著增高,这提示我们必须关注TAVR的解剖适应程度,根据术前CT来进行BAV患者的TAVR危险分层[28

此外,我们还需要关注BAV‑TAVR的长期预后,毕竟BAV‑TAVR更容易出现瓣膜支架“椭圆形”,可能影响瓣膜耐久性,既往有长期随访结果的早期临床试验几乎都剔除了BAV患者,因此,这一部分临床数据是缺失的,有待学者们的进一步探索。

40%的BAV患者合并升主动脉扩张(升主动脉直径≥40mm),主动脉夹层或破裂发生率与主动脉扩张直径相关[29,目前指南[7,9推荐BAV合并升主动脉扩张直径≥45mm的患者同期行SAVR和升主动脉修复。此类患者似乎不适合单纯TAVR,但值得注意的是,我们并没有BAV合并升主动脉扩张患者行TAVR术后升主动脉事件率会增加的直接证据。1年的短期随访数据显示,TAVR术后升主动脉扩张较术前都没有进展[30

同时,长达15年的随访结果显示对还没有合并升主动脉瘤形成BAV的患者进行单纯换瓣,术后虽然升主动脉瘤形成几率仍增加,但发生主动脉夹层的几率很低,与三叶瓣患者差异无统计学意义[31这提示单纯换瓣术后的升主动脉扩张并不一定会带来主动脉夹层或破裂的临床结果。

随着大血管腔内修复术的发展,今后TAVR联合主动脉腔内修复(endovascular aortic repair,EVAR)也许能尝试应用于升主动脉事件风险高的患者。

三、冠状动脉阻塞风险和通路保留

TAVR手术的冠状动脉阻塞风险一直以来都是具有适应证的患者无法接受手术的主要原因之一,也是一大技术壁垒,并且术后冠状动脉再介入通路也时常出现被人工瓣架和自体瓣膜阻挡的情况。

随着TAVR技术成熟度的提高,国内外术者尝试用BASILICA和烟囱支架技术来解决术中冠状动脉阻塞风险的难题,并取得了不错的短期和中期随访结果[32-35

此外,TAVR瓣膜设计也为最大程度地保留冠状动脉通路做了改进。如新一代TAVR瓣膜尽量增大瓣环上方瓣架的孔隙直径;拥有大定位件的TAVR瓣膜,瓣架短,其定位件可以依据瓣膜定位,进行窦对齐,定位件中间部分可以做到无金属结构,最大程度保留冠状动脉通路,并且定位件可以一定程度上限制自体瓣膜向冠状动脉开口的移位,降低术中急性冠状动脉闭塞的风险。但是,也存在瓣架支撑力不足、输送系统直径过大等局限性,如何改进值得我们探索。

后续经股动脉入路的迭代产品[如TF‑JenaValve(JenaValve公司,德国)、TF‑J‑valve(杰成医疗科技有限公司,中国)和HanchorValve(翰凌医疗器械有限公司,中国)]的表现值得期待。

四、单纯主动脉瓣反流

AR的患病率比AS更高,在中国也是如此[36-37

相较于治疗AS,既往临床数据显示治疗单纯AR时TAVR有着更低的手术成功率、更高的瓣中瓣置入率、更多的瓣周漏和更高的30d死亡率[38。其中,第一代TAVR瓣膜在AR患者中的整体手术成功率仅70%左右,具有可回收功能的第二代瓣膜较第一代瓣膜的成功率有明显增加,可达80%左右[39-40,但都只能在严格筛选的解剖合适的患者中应用,并且是“off‑label”的使用。

随着器械的改进,在新一代的瓣膜中出现了具有AR适应证的瓣膜,包括JenaValve和J‑Valve,此类瓣膜因为具有“定位件”,明显减少了瓣膜移位,手术成功率提高到90%以上[41-42。我国自主研发的HanchorValve也属于此类,其独特分离式定位件和球扩瓣设计,可能在瓣架支撑力方面改善这类瓣膜的局限性,HanchorValve正在笔者中心开展AS和AR双适应证的探索性临床研究。

五、TAVR的未来发展趋势

从TAVR发展历程来看,适应证不断拓展,未来TAVR必将以“全患群”为目标,向多维度发展。我们的探索方向主要集中在二个方面:一是TAVR诊疗过程的优化,二是TAVR瓣膜的创新改进。

向上滑动阅览

参考文献:

[1] Cribier A,Eltchaninoff H,Bash A,et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case  description [J]. Circulation, 2002, 106(24):3006‑3008.DOI:10.1161/01.cir.0000047200.36165.b8.

[2] Bonhoeffer P,Boudjemline Y,Saliba Z,et al.Percutaneous replacement of pulmonary valve in a right‑ventricle to pulmonary‑artery prosthetic conduit with valve dysfunction[J]. Lancet, 2000, 356(9239):1403‑1405.DOI:10.1016/S0140‑6736(00)02844‑0.

[3] Baumgartner H,FalkV,BaxJJ,et al.2017 ESC/EACTS guidelines for the management of valvular heartdisease[J]. Eur Heart J,2017,38(36):2739‑2791.DOI:10.1093/eurheartj/ehx391.

[4] Nishimura RA,Otto CM,Bonow RO,etal.2017AHA/ACC focused up date of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease:a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines[J]. J Am Coll  Cardiol, 2017, 70(2) : 252‑289. DOI:10.1016/j.jacc.2017.03.011.

[5] Mack MJ, Leon MB, Thourani VH,et al. Transcatheter aortic‑valve replacement with a balloon‑expandable valve in low‑risk patients[J].N Engl J Med, 2019, 380(18): 1695‑1705. DOI:10.1056/NEJMoa1814052.

[6] Popma JJ,Deeb GM, Yakubov SJ, et al. Transcatheter aortic‑valve replacement with a self‑expanding valve in low‑risk patients [J]. N Engl J Med, 2019, 380(18): 1706‑1715. DOI:10.1056/NEJMoa1816885.

[7] Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation,2021,143(5):e72‑e227.DOI:10.1161/CIR.0000000000000923.

[8] Sundt TM, Jneid H. Guideline Update on Indications for Transcatheter aortic valve implantation based on the 2020 American College of Cardiology/American Heart Association Guidelines for management of valvular heart disease [J]. JAMA Cardiol, 2021,6(9): 1088‑1089. DOI:10.1001/jamacardio.2021.2534.

[9] Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS guidelines for the management of valvular heart disease [J]. Eur Heart J, 2022,43(7):561‑632.DOI:10.1093/eurheartj/ehab395.

[10] 潘文志,周达新,葛均波.全患群经导管主动脉瓣置换术:未来的终极目标[J/OL].中华心血管病杂志(网络版),2018,1:e1000005.(2018‑12‑12)[2022‑01‑05].http://www.cvjc.org.cn/index.php/Column/columncon/article_id/166.DOI:10.3760/cma.j.issn.2096‑1588.2018.1000005.

[11] Deharo P, Bisson A, Herbert J, et al. Transcatheter valve‑in‑valve aortic valve replacement as an alternative to surgical re‑replacement[J]. J Am Coll Cardiol, 2020, 76(5): 489‑499.DOI:10.1016/j.jacc.2020.06.010.

[12] Tam DY, Dhar ma C, Rocha RV, et al. Transcatheter ViV versus redo surgical AVR for the management of failed biological prosthesis: early and late outcomes in a propensity‑matchedcohort[J]. JACC Cardiovasc Interv, 2020, 13(6):765‑774.DOI:10.1016/j.jcin.2019.10.030.

[13] Bleiziffer S, Simonato M, Webb JG, et al. Long‑term outcomes after transcatheter aortic valve implantation in failed bioprosthetic valves[J]. Eur Heart J, 2020, 41(29): 2731‑2742.DOI:10.1093/eurheartj/ehaa544.

[14] Hirji SA, Percy ED, Zogg CK, et al. Comparison of in‑hospital outcomes and readmissions for valve‑in‑valve transcatheter aortic valve replacement vs.reoperative surgical aortic valve replacement: a contemporary assessment of real‑world outcomes[J]. Eur Heart J, 2020, 41(29): 2747‑2755. DOI:10.1093/eurheartj/ehaa252.

[15] Landes U, Sathananthan J, Witberg G, et al. Transcatheter replacement of transcatheter versus surgically implanted aortic valve bioprostheses [J]. J Am Coll Cardiol, 2021, 77(1): 1‑14. DOI:10.1016/j.jacc.2020.10.053.

[16] Rodriguez‑Gabella T, Voisine P, Dagenais F, et al. Long‑term outcomes following surgical aortic bioprosthesis implantation [J]. J Am Coll Cardiol,2018,71(13):1401‑1412.DOI:10.1016/j.jacc.2018.01.059.

[17] Gleason TG, Reardon MJ, Popma JJ, et al. 5‑year outcomes of self‑expanding ranscatheter versus surgical aortic valve replacement in high‑risk patients [J]. J Am Coll ardiol, 2018, 72(22): 2687‑2696.DOI:10.1016/j.jacc.2018.08.2146.

[18] SøndergaardL,IhlemannN,CapodannoD,etal.Durabilityoftranscatheterandsurgicalbioprostheticaorticvalvesinpatientsatlowersurgicalrisk[J].JAmCollCardiol,2019,73(5):546‑553.DOI:10.1016/j.jacc.2018.10.083.

[19] 宋光远,王墨扬,王媛,等.Venus‑A主动脉瓣膜介入治疗重度主动脉瓣狭窄的效果[J].中华心血管病杂志,2017, 45(10):843‑847.DOI:10.3760/cma.j.issn.0253‑3758.2017.10.006.

[20] Liao YB, Li YJ, Xiong TY, et al. Comparison of procedural, clinical and valve performance results of transcatheter aortic valve replacement in patients with bicuspid versus tricuspid aortic stenosis[J]. Int J Cardiol,2018,254:69‑74.DOI:10.1016/j.ijcard.2017.12.013.

[21] Zhou D, Pan W, Wang J, et al. VitaFlow™ transcatheter valve system in the treatment of severe aortic stenosis: one‑year results of a multicenter study[J]. Catheter Cardiovasc Interv, 2020,95(2):332‑338.DOI:10.1002/ccd.28226.

[22] Liu XB, Jiang JB, Zhou QJ, et al.  Evaluation of the safety and efficacy of transcatheter aortic valve implantation in patients with a severe stenotic bicuspid aortic valve in a Chinese population [J]. J Zhejiang Univ SciB, 2015, 16(3): 208‑214. DOI:10.1631/jzus.B1500017.

[23] Halim SA, Edwards FH, Dai D, et al. Outcomes of transcatheter aortic valve replacement in patients with bicuspid aortic valve disease: a report from the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry [J]. Circulation,2020,141(13):1071‑1079.DOI:10.1161/CIRCULATIONAHA.119.040333.

[24] Forrest JK, Kaple RK, Ramlawi B, et al. Transcatheter aortic valve replacement in bicuspid versus tricuspid aortic valves from the STS/ACC TVT registry[J]. JACCC ardiovasc Interv, 2020, 13(15): 1749‑1759.DOI:10.1016/j.jcin.2020.03.022.

[25] Zhang Y, Pan WZ, Guan LH, et al. Small balloon strategy associated with low pacemaker implantation rate after self‑expanding transcatheter valve implantation [J]. World J Emerg Med, 2021, 12(1): 48‑53.DOI:10.5847/wjem.j.1920‑8642.2021.01.008.

[26] Liu X, He Y, Zhu Q, et al. Supra‑annular structure assessment for self‑expanding transcatheter heart valve size selection in patients with bicuspid aortic valve [J]. Catheter Cardiovasc Interv,2018,91(5):986‑994.DOI:10.1002/ccd.27467.

[27] 中国医师协会心血管内科医师分会结构性心脏病专业委员会.经导管主动脉瓣置换术中国专家共识(2020更新版)[J].中国介入心脏病学杂志, 2020, 28(6): 301‑309. DOI:10.3969/j.issn.1004‑8812.2020.06.001.

[28] Yoon SH, Kim WK, Dhoble A, et al. Bicuspid aortic valve morphology and outcomes after transcatheter aortic valve replacement [J]. J Am Coll Cardiol, 2020, 76(9): 1018‑1030. DOI:10.1016/j.jacc.2020.07.005.

[29] Hardikar AA, Marwick TH. Surgical thresholds for bicuspid aortic valve associated aortopathy [J]. JACC Cardiovasc Imaging, 2013, 6(12): 1311‑1320. DOI:10.1016/j.jcmg.2013.10.005.

[30] Lv WY, Zhao ZG, Li SJ, et al. Progression of the ascending aortic diameter after transcatheter aortic valve implantation: based on computed tomography images[J]. J Invasive Cardiol,2019,31(8):E234‑E241.

[31] Itagaki S, Chikwe JP, Chiang YP, et al. Long‑term risk for aortic complications after aortic valve replacement inpatients with bicuspid aortic valve versus marfan syndrome [J]. J Am Coll Cardiol, 2015,65(22):2363‑2369.DOI:10.1016/j.jacc.2015.03.575.

[32] Khan JM, Dvir D, Greenbaum AB, et al. Transcatheter laceration of aortic leaflets to prevent coronary obstruction during transcatheter aortic valve replacement: concept to first‑in‑human[J]. JACC Cardiovasc Interv, 2018, 11(7): 677‑689. DOI:10.1016/j.jcin.2018.01.247.

[33] Khan JM, Greenbaum AB, Babaliaros VC, et al. BASILICA trial: one‑year outcomes of transcatheter electrosurgical leaflet laceration to prevent tavr coronary obstruction [J]. Circ CardiovascInterv,2021,14(5):e010238.DOI:10.1161/CIRCINTERVENTIONS.120.010238.

[34] Mercanti F,Rosseel L, Neylon A, et al. Chimney stenting for coronary occlusion during TAVR: insights from the chimney registry [J]. JACC Cardiovasc Interv, 2020, 13(6): 751‑761. DOI:10.1016/j.jcin.2020.01.227.

[35] Palmerini T, Chakravarty  T, Saia F, et al.  Coronary protection to prevent coronary obstruction during TAVR: a multicenter international registry [J]. JACC Cardiovasc Interv, 2020, 13(6): 739‑747. DOI:10.1016/j.jcin.2019.11.024.

[36] Iung B, Delgado V, Rosenhek R, et al. Contemporary presentation and management of valvular heart disease: the EUR Observational research programme valvular heart disease IIsurvey [J]. Circulation, 2019, 140(14): 1156‑1169. DOI:10.1161/CIRCULATIONAHA.119.041080.

[37] Pan W, Zhou D, Cheng L, et al.  Aorticregurgitation is more prevalent than aortic stenosis in Chinese elderly population: implications for transcatheter aortic valve replacement [J]. Int J Cardiol, 2015, 201: 547‑548. DOI:10.1016/j.ijcard.2014.10.069.

[38] Huded CP, Allen KB, Chhatriwalla AK. Counterpoint: challenges and limitations of transcatheter aortic valve implantation for aortic regurgitation [J]. Heart, 2021, 107(24): 1942‑1945. DOI:10.1136/heartjnl‑2020‑318682.

[39] Sawaya FJ, Deutsch MA, Seiffert M, et al. Safety and efficacy of transcatheter aortic valve replacement in the treatment of pure aortic regurgitation in native valves and failing surgical bioprostheses: results from an international registry study [J]. JACC Cardiovasc Interv, 2017, 10(10): 1048‑1056.DOI:10.1016/j.jcin.2017.03.004.

[40] Yoon SH, Schmidt T, Bleiziffer S, et al. Transcatheter aortic valve replacement in pure native aortic valve regurgitation [J]. J Am Coll Cardiol, 2017,70(22):2752‑2763.DOI:10.1016/j.jacc.2017.10.006.

[41] Wernly B, Eder S, Navarese EP, et al. Transcatheter aortic valve replacement for pure aortic valve regurgitation : "on‑label" versus "off‑label" use of TAVR devices [J]. Clin Res Cardiol, 2019, 108(8): 921‑930. DOI:10.1007/s00392‑019‑01422‑0.

[42] Shi J, Wei L, Chen Y, et al. Transcatheter aortic valve implantation with J‑valve: 2‑year outcomes from a multicenter study [J]. Ann Thorac Surg, 2021, 111(5):1530‑1536.DOI:10.1016/j.athoracsur.2020.06.139.

[43] Mack MJ, Lindenfeld J, Abraham WT, et al. 3‑year outcomes of transcatheter mitral valve repair in patients with heart failure [J]. J Am Coll Cardiol, 2021,77(8):1029‑1040.DOI:10.1016/j.jacc.2020.12.047.

[44] Bonow RO, O′Gara PT, Adams DH, et al. 2020 focused update of the 2017 ACC expert consensus decision path way on the management of mitral regurgitation: a report of the American College of Cardiology Solution Set Oversight Committee [J]. J Am Coll Cardiol, 2020, 75(17): 2236‑2270. DOI:10.1016/j.jacc.2020.02.005.

[45] Mauri V, Besler C, Riebisch M, et al. German multicenter experience with a new leaflet‑based transcatheter mitral valve repair system for mitral regurgitation[J].JACC Cardiovasc Interv, 2020, 13(23): 2769‑2778.DOI:10.1016/j.jcin.2020.08.025.

[46] Zahr F, Song HK, Chadderdon SM, et al. 30‑day outcomes following transfemoral transseptal transcatheter mitral valve replacement: intrepid TMVR early feasibility study results[J]. JACC CardiovascInterv,2022,15(1):80‑89.DOI:10.1016/j.jcin.2021.10.018.

[47] 宁小平,安朝,乔帆,等.经导管介入三尖瓣置换装置LuX-Valve在重度三尖瓣反流治疗中的应用[J].中华心血管病杂志,2021,49(5):455-460.DOI:10.3760/cma.j.cn112148-20210125-00091.

[48] Sun Z, Li H, Zhang Z, et al. Twelve‑monthoutcomesoftheLuX‑Valvefortranscathetertreatmentofseveretricuspidregurgitation[J].EuroIntervention,2021,17(10):818‑826.DOI:10.4244/EIJ‑D‑21‑00095.

[49] BaumgartnerH,DeBackerJ,Babu‑NarayanSV,etal.2020ESCGuidelinesforthemanagementofadultcongenitalheartdisease[J].EurHeartJ,2021,42(6):563‑645.DOI:10.1093/eurheartj/ehaa554.

[50] 周达新,潘文志,管丽华,等.经皮肺动脉瓣置入二例报道[J].中国介入心脏病学杂志,2013,21(5):332‑334.DOI:10.3969/j.issn.1004‑8812.2013.05.015.

[51] Zhou D, Pan W, Jilaihawi H, et al. A self‑expanding percutaneous valve for patients with pulmonary regurgitation and an enlarged native right ventricular outflow tract: one‑year results [J]. EuroIntervention, 2019, 14(13): 1371‑1377. DOI:10.4244/EIJ‑D‑18‑00715.

[52] Morgan G, Prachasilchai P, Promphan W, et al. Medium‑term results of percutaneous pulmonary valve implantation using the Venus P‑valve: international experience[J]. EuroIntervention, 2019,14(13):1363‑1370.DOI:10.4244/EIJ‑D‑18‑00299.

[53] Haas NA, Vcasna R, Laser KT, et al. The standing of percutaneous pulmonary valve implantation compared to surgery in a non‑preselected cohort with dysfunctional right ventricular outflow tract‑reasons forfailure and contraindications[J]. JCardiol, 2019, 74(3): 217‑222. DOI:10.1016/j.jjcc.2019.03.021.

[54] Esmaeili A, Bollmann S, Khalil M, et al. Percutaneous pulmonary valve implantation for reconstruction of a patch‑repaired right ventricular outflow tract[J]. J Interv Cardiol, 2018, 31(1): 106‑111. DOI:10.1111/joic.12443.

[55] Maschietto N, Sperotto F, Esch JE, et al. The snared wire technique for Sapien valve implantation in the pulmonary position [J]. Catheter Cardiovasc Interv,2020,96(4):898‑903.DOI:10.1002/ccd.28970.



阅读数: 4455